top of page

SCI Kapsamı Dışındaki Yayınlar

     A.2.1. Set E. and Özdemir M.E., “Further inequalities involving beta-gamma function and means”, Ebpaзийckий Matematичeckий Жуphaл (Euroasian Math. J.), No.3, 58-62, Actaha, (2008). (ISBN: 9965-718-27-X)

 

     A.2.2. Set E., Özdemir M.E. and Sarıkaya M.Z., “Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are m-convex”, AIP Conference Proceedings, 1309, 861-863 (2010). (Web of Science)

 

     A.2.3. Sarıkaya M.Z., Set E. and Özdemir M.E., “On some new inequalities of Hadamard type involving h-convex functions”, Acta Mathematica Universitatis Comenianae,  79 (2), 265-272 (2010).

 

     A.2.4. Özdemir M.E., Kavurmacı H. and Set E., “Ostrowski’s type inequalities for convex functions”, Kyungpook Mathematical Journal, 50, 371-378 (2010).

 

     A.2.5. Özdemir M.E., Set E. and Alomari M., “Integral inequalities via several kinds of convexity”, Creative Mathematics and Informatics , 20 (1), 62–73 (2011).

 

     A.2.6. Özdemir M.E., Akdemir A.O., Set E., “A New Ostrowski-Type Inequality for Double Integrals”, Journal of Inequalities and Special Functions, 2 (1), 27-34 (2011).

 

     A.2.7. Set E., Özdemir M.E., Sarıkaya M.Z., “On new inequalities of Simpson’s type for quasi- convex functions with applications”, Tamkang Journal of Mathematics, 43 (3), 357-364 (2012).

     

     A.2.8. Set E., Sardari M., Özdemir M.E. and Rooin J., “On Generalizations of The Hadamard Inequality for (α,m)-Convex Functions”, Kyungpook Mathematical Journal, 52, 307-317 (2012).

 

     A.2.9. Set E., Özdemir M.E., Sarıkaya M.Z., “New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications”, Facta Universitatis Ser. Math. Inform., 27 (1), 67-82 (2012).

 

     A.2.10. Set E., Sarıkaya M.Z. and Akdemir A.O. “A new general inequality for double integrals”,  AIP Conference Proceedings, 1470, 122-125 (2012). (Web of Science)

 

     A.2.11. Akdemir A.O., Set E., Özdemir M.E., Yıldız Ç., “On some new inequalities of Hadamard type for h-convex functions”, AIP Conference Proceedings, 1470, 35-38 (2012). (Web of Science)

 

     A.2.12. Özdemir M.E., Yıldız Ç., Akdemir A.O., Set E., “New inequalities of Hadamard type for quasi-convex functions”, AIP Conference Proceedings, 1470, pp. 99-101 (2012). (Web of Science)

 

     A.2.13. Sarıkaya M.Z., Set E., Özdemir M.E. and Dragomir S.S., “New Some Hadamard’s Type Inequalities for Co-Ordinated Convex Functions”, Tamsui Oxford Journal of Information and Mathematical Sciences, 28, 137-152 (2012).

 

     A.2.14. Sarıkaya M.Z., Set E., Özdemir M.E., “On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex”, Journal of Applied Mathematics, Statistics and Informatics, 9 (1), 37-45 (2013).

 

     A.2.15. Sarıkaya M.Z., Set E., Ögülmüş H., “Some new inequalities of Hermite-Hadamard type for mappings whose derivatives are s-convex in the second sense”, International Journal of Modern Mathematical Sciences, 8 (3), 212-218 (2013).

 

     A.2.16. Set E., Sarıkaya M.Z., Ögülmüş H., “Some New Inequalities of Hermite-Hadamard Type for h-convex Functions the Co-ordinates via Fractional Integrals”, Facta Univ. Ser. Math. Inform. 29 (4) , 397-414 (2014).

 

     A.2.17. Set E., Sarıkaya M.Z., “On a New Ostrowski-Type Inequailty and Related Results”, Kyungpook Math. J., 54 , 545-554 (2014).

 

     A.2.18. Sarıkaya M.Z., Set E., “On New Ostrowski Type Integral Inequalities”, Thai J. Math., 12 (1), 145-154 (2014).

 

     A.2.19. Set E., Sarıkaya M.Z., Özdemir M.E., Yıldırım H., “The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results”, JAMSI, 10  (2), 69-83 (2014).

 

     A.2.20. Sarıkaya M.Z., Set E., Özdemir M.E., “On some integral inequalities for twice            differentiable mappings”, Stud. Univ. Babeş-Bolyai Math. 59 (1), 11-24 (2014).

 

     A.2.21. Set E., Tomar M., Maden S., “Hermite-Hadamard Type Inequalities for s-convex Stochastic Processes in the Second Sense”, Turkish J. Anal. Number Theory, 2 (6) , 202-207 (2014).

 

     A.2.22. Önalan-Kavurmacı H., Akdemir A.O., Set E., Sarıkaya M.Z., “Simpson's Type Inequalities for m- and (alpha;m)-Geometrically Convex Functions”, Konuralp J. Math., 2 (1),  90-101 (2014).

 

     A.2.23. Tomar M., Set E., Bekar N. O., “On Hermite-Hadamard-Type Inequalities for Strongly Log-convex Stochastic Processes”, J. Global Engineer. Stud., 2 , 53-61 (2014).

 

     A.2.24. Özdemir M.E., Set E., Akdemir A.O., “On Some Hadamard-Type Inequalities for (r,m) -Convex Functions”, Applications and Applied Mathematics:An International Journal, 9 (1), 388–401 (2014). 

 

     A.2.25. Set E., Sarıkaya M.Z., Akdemir A.O., “Hadamard type inequalities for phi-convex functions on the co-ordinates”, Tbilisi Mathematical Journal 7 (2), 51-60 (2014).

 

     A.2.26. İşcan İ., Set E., Özdemir M.E., “Some new general integral inequalities for P-functions”, Malaya J. Mat. 2 (4), 510–516 (2014).

     

     A.2.27. Set E., Sarıkaya M.Z., Özdemir M.E., “Some Ostrowski’s Type Inequalities For Functions Whose Second Derivatives are s-Convex in The Second Sense”, Demonstratio Mathematica Vol. XLVII (1), 37-47 (2014).

 

     A.2.28. Sarıkaya M.Z., Yaldız H., Set E., “On fractional inequalities via Montgomery identities”, Int. J. Open Problems Complex Analysis, 6 (2), (2014).

 

     A.2.29. Set E., İşcan İ., Mumcu İ., “Generalizations of Hermite-Hadamard-Fejer Type Inequalities for Functions Whose Derivatives are s-Convex Via Fractional Integrals”, Turkish J. Anal. Number Theory, 2 (5), 183-188 (2014).

 

     A.2.30. Tomar M., Set E., Maden S., “Hermite-Hadamard Type Inequalities for Log-convex Stochastic Processes”, Journal Of New Theory., 2 , 23-32 (2015).

 

     A.2.31. Set E., Özdemir M.E., Sarıkaya M.Z., Karakoç F., “Hermite-Hadamard type Inequalities for mappings whose derivatives are s-convex in the second sense via fractional integrals”, Khayyam J. Math., 1 (1), 62-70 (2015).

 

     A.2.32. Maden S., Tomar M., Set E., “Hermite-Hadamard type Inequalities for s-convex stochastic processes in first sense”, Pure Appl. Math. Lett., 2015, 1-7 (2015).

 

     A.2.33. Set E., Sarıkaya M.Z., Tomar M., “Hermite-Hadamard type inequalities for co-ordinates convex stochastic processes”, Mathematica Aeterna, 5 (2), 363 – 382 (2015).

 

     A.2.34. Özdemir M.E., Set E., Akdemir A.O., “On The (r,s)-convexity and Some Hadamard-Type Inequalities”, J. Applied Functional Analysis, 10 (1-2), 95-100 (2015).

 

     A.2.35. Set E., Karataş S., Mumcu İ., “Fuzzy Ostrowski Type Inequalities For (alpha,m)-Convex Functions”, Journal Of New Theory., 6 , 54-65 (2015).

 

     A.2.36. Ahmad F., Hussain S., Sarıkaya M.Z., Mir N.A., Set E., “New Results in Q-Inner Product”, J. Apple. Environ. Biol. Sci., 5 (5), 308-311 (2015).

 

     A.2.37. Ahmad F., Hussain S., Sarıkaya M.Z., Mir N.A., Set E., “New Results in SQ-Inner Product”, J. Apple. Environ. Biol. Sci., 5 (5), 276-279 (2015).

 

     A.2.38. Özdemir M.E., Set E., Akdemir A.O., Sarıkaya M.Z. “Some new Chebyshev type inequalities for functions whose derivatives belongs to Lp spaces”, Afrika Matematika, 26, 1609–1619 (2015). 

 

     A.2.39. Set E., Sarıkaya M.Z., Ahmad F.,“ On weighted Ostrowski-type inequalities for double integrals”, Pure Appl. Math. Lett., 2015, 55-58 (2015).

 

     A.2.40. Set E., İşcan İ., Zehir F.,“On Some New Inequalities of Hermite-Hadamard Type Involving Harmonically Convex Functions Via Fractional Integrals”, Konuralp Journal of Mathematics 3 (1), 42-55 (2015).

 

     A.2.41. Set E., İşcan İ., Paça S.,“ Hermite Hadamard-Fejer type inequalities for quasi convex functions via fractional integrals”, Malaya J. Mat. 3 (3), 241–249 (2015).

 

     A.2.42. Set E., Gözpınar A., “Some inequalities for generalized s-convex functions in the second sense on fractal sets”, AIP Conference Proceedings, 1726, 020050-1 - 020050-5 (2016). (Web of Science)

 

     A.2.43. Set E., Mumcu İ., “On new inequalities of Hermite-Hadamard type for generalized s-convex functions”, AIP Conference Proceedings, 1726, 020055-1 - 020055-5 (2016). (Web of Science)

     

     A.2.44. Set E., Karataş S.S., “New Hermite-Hadamard type inequalities obtained via fractional integral for differentiable s-convex functions”, AIP Conference Proceedings, 1726, 020044-1 - 020044-5 (2016). (Web of Science)

 

     A.2.45. Set E., Korkut N., “On new inequalities of Hermite Hadamard type for functions whose second derivatives in absolute value are s-convex”, AIP Conference Proceedings, 1726, 020040-1 - 020040-5 (2016). (Web of Science)

 

     A.2.46. Set E., Uygun N., Tomar M., “New inequalities of Hermite-Hadamard type for generalized quasi-convex functions with applications”, AIP Conference Proceedings, 1726, 020039-1 - 020039-5 (2016). (Web of Science)

 

     A.2.47. Tomar M.,  Set E., Sarıkaya M.Z., “Hermite-Hadamard type Riemann-Liouville fractional integral inequalities for convex functions”, AIP Conference Proceedings, 1726, 020035-1 - 020035-5 (2016). (Web of Science)

 

     A.2.48. Set E., Özdemir M.E., Uygun N., “On new Simpson type inequalities for quasi-convex functions via Riemann-Liouville integrals”, AIP Conference Proceedings, 1726, 020068-1 - 020068-5 (2016). (Web of Science)

 

     A.2.49. Set E., Sarıkaya M.Z., Karakoç F., “Hermite-Hadamard type inequalities for h-convex functions via fractional integrals ”, Konuralp J. Math., (1), 254-260 (2016).

 

 

 

 

 

 

 

 

bottom of page